arXiv:1910.02656v1 [cs.CR] 7 Oct 2019

Towards a Data Centric Approach for the Design and
Verification of Cryptographic Protocols™

Luca Arnaboldi*

Newcastle University

L.arnaboldi@ncl.ac.uk

ABSTRACT

We propose MetaCP, a Meta Cryptography Protocol verification
tool, as an automated tool simplifying the design of security pro-
tocols through a graphical interface. The graphical interface can
be seen as a modern editor of a non-relational database whose
data are protocols. The information of protocols are stored in XML,
enjoying a fixed format and syntax aiming to contain all required
information to specify any kind of protocol. This XML can be seen
as an almost semanticless language, where different plugins confer
strict semantics modelling the protocol into a variety of back-end
verification languages. In this paper, we showcase the effectiveness
of this novel approach by demonstrating how easy MetaCP makes
it to design and verify a protocol going from the graphical design
to formally verified protocol using a Tamarin prover plugin. Whilst
similar approaches have been proposed in the past, most famously
the AVISPA Tool, no previous approach provides such as small
learning curve and ease of use even for non security professionals,
combined with the flexibility to integrate with the state of the art
verification tools.

KEYWORDS

Security and privacy; Cryptography; Formal security models; Logic
and verification; Security protocols

1 INTRODUCTION

When communication travels through insecure channels, as it does
many times per day in the Internet, high level of assurance of secu-
rity of sensible information becomes of paramount importance. The
rules of communications between parties are dictated by protocol
implementations. In this context, attackers and protocols continu-
ously evolve in an adversarial game where the protocols improve
to be secure against the attackers. Before implementing a protocol,
we usually desire to ensure that the design is not flawed. For this
purpose, the application of formal methods to verify protocols has
proved itself to be very effective. Protocol verification languages
such as ProVerif [5], Tamarin [9], EasyCrypt [3] and many more,
have been proposed to provide aided semi automatic verification
of protocols with excellent success [2, 4, 7, 10]; however, there
is a huge disconnection between these languages and the actual
protocols. For those who are not experts in a specific language,
interpreting a specification of a protocol written in English and
modelling it into a formal tool is a difficult task. Even harder is
the act of going back from the model to the original specification
as the model may contain less information than the specification.

*Both authors contributed equally to this work
T Final version to appear in the Proceedings of the 26th ACM SIGSAC Conference on
Computer and Communications Security (CCS’19) - Posters & Demo section.

Roberto Metere”
Newcastle University and
The Alan Turing Institute
roberto.metere@ncl.ac.uk

What is desirable instead is a single structured interface that is
easy to understand, visualise, and that can automatically transform
a design into a variety of back-end verification options, ensuring
correctness of design and providing consistency. We illustrate this
data-centric approach in Fig. 1. In particular, in our approach the

Figure 1: A typical approach to the verification of a protocol
(top) versus our centralised approach (bottom).

natural expert ProVerif
language _/

typical approach ProScript

centralised approach

% o

natural \ Me’raCP
language P‘uws EasyCrypt
LaTeX PSV (XML) HTML

specifications are natural language agnostic and stored in a data-
base containing all required information; the semantics of such
information are determined only when a spoken, visual, or formal
language specification is created from it. Having this central source
of information would be beneficial to link all the different (and
disjointed) semantics we usually adopt in different contexts. In
addition, the protocols could also enjoy a much higher degree of
rigour they allegedly lack with the current workflow.

To showcase the effectiveness of our approach, we implement
and present the promising results we obtained by using our tool
MetaCP. MetaCP is a tool that enables the designers of security
protocols to be guided through their work, and allowing them to
rely on automatic reasoning of supported security properties at
each step of the design and verification process.

2 DESIGN OF SECURE PROTOCOLS

The design of a protocol almost always follows the same three
intertwining steps; i) a graphical representation of the protocol is
sketched out, representing the involved parties and the flow of the
protocol; ii) message contents and mathematical requirements are
set out; iii) security goals are decided upon, often not formally but
rather written in natural language. The processes of designing the
protocol and employing a formal verification tool are often detached

and done at separate stages by different people. The state of the
art tools to perform formal security evaluation, such as Tamarin
and ProVerif, improved in the past decades and enjoy a wide spread
use. However, these tools do not provide any means to relate to the
whole design process, impacting the usability and effectiveness of
the evaluations. As it stands, it is very difficult for the casual user
or even for the security professional, to ascertain the truthfulness
of the analysis, and how it relates to the original protocol.

One further negative aspect of the current process is that each
tool uses a separate syntax requiring a designer to be able to inter-
pret various different idioms for verification. This is an unfortunate
circumstance of the various tools giving different results for the
same protocol [7]. Witnessing the sensibility of researchers about
this problem, namely the project “Automated Validation of Internet
Security Protocols and Applications” (AVISPA) [1] has attempted to
unify the verification, by presenting a single language of specifica-
tion and automating the translation into various back-end tooling.
The proposed approach based itself on the assumption that most
people would be familiar with AnB notation [6]. To this end, they
extended and formalised several aspects of this notation [6] which
eventually resulted in HLPSL. From this language the tool is able to
automatically convert into several verification back-ends to perform
the analysis. Even with the integration of multiple verification op-
tions, research shows that protocols found to be secure by AVISPA
were later found flawed in more modern tools [7]. This demon-
strates the need for ease of extension to integrate more tooling in
the back-end verification.

Another attempt that the literature proposes to standardise the
way in which protocols are designed is ProScript [8], here, a new
high level language for the specification of security protocols is
proposed. ProScript is able to automatically interpret from the high
level specification to applied PI calculus, verifiable in ProVerif and
CryptoVerif. Their approach is very much inline with our desired
outcome, however their new definition language has the major
downside that it doesn’t allow for much to be expressed, somewhat
limiting what you can describe as well as being restricted to the
usage with the applied PI calculus based tools.

Both AVISPA and ProScript certainly make it easier to verify and
design a protocol; in contrast, their reliance on a single semantic
of translation makes it difficult to expand to newer tools with dif-
ferent semantics. We strongly believe that our approach of using
only basic semantics and enforcing a specific one in the target lan-
guage generation process is much more extendable and promising.
This is because this approach does not pretend to substitute the
typical human process of modelling the reality to a mathematical
representation, but rather to aid it.

What MetaCP proposes is a graphical design interface, as illus-
trated in Fig. 2, that allows a protocol to be drawn out easily through
a drag-n-drop interface. The interface can be seen as a database
graphical editor able to let the user specify variables, functions,
message flow, and equational theories; then it lets the user embed
all the possible knowledge required to describe a protocol, going far
beyond what is possible in symbolic model checkers, and providing
more rigour to common natural language specification.

Figure 2: Design Interface for MetaCP

& MetaCP Loa

Tamarin P
(wm)o

O
types/sets O

variables Bob
el
Xy | X | Y
=~ led u - =
|£‘ nowledge functions i‘
peN yErN
geZ, Y Y e g¥
—
|E zeclN ‘II‘
______ D O
k<Y"® k+— XY

3 FROM SPECIFICATION TO VERIFICATION

Once the protocol is specified using the MetaCP tool the graphical
representation is saved as a structured XML containing all informa-
tion required to describe the protocol; this structured XML might
be seen as a basic language with syntax and very little semantics.
The structured XML can be viewed as a database of Protocol Speci-
fication and Verification (PSV). To allow non-experts to work with
it, we allow the creation and modification of protocols through a
flexible and easy to use graphical interface; editiing through the
PSV is also allowed and can be visualised back into the interface. We
remark that this structure has little to no semantics merely aimed
to provide information for the underlying plugins. The reasoning
behind this is that various tools work very differently, whilst one
semantic might work very well to translate into one tool it would
fail to capture the requirements of another.

With the continuous evolution of new tools and models, a tool
that scales to incorporate these approaches is very important. To
allow for this scalability, a plugin system is devised to work with the
PSV, where each plugin enforces the desired semantics of the target
language from the underlying PSV. Since modelling a protocol is
done in the first place as an effective, arbitrary interpretation, one of
the goals is usually to show that the model captures the properties
required. This task is delegated to experts in the target language.

By having a PSV, you can store much more information than
what is required by symbolic model checkers thus, we are not lim-
ited to the automated conversion of the protocol to a symbolic
modelling language. Translating plugins may even be added for
the automated conversion to natural language to create English
written specifications, and even to program code such a C++. The
ability to store further relations and information about the protocol
allows for syntax checking and errors in the design; in particu-
lar, we emphasise that this simple aid is currently unavailable in

Table 1: Results of experiment using Tamarin. We compare
the code automatically produced by MetaCP with the official
examples of the Tamarin tool.

lines of code verification time

manual auto manual auto

Diffie-Hellman - 85 - 0.23 s
Needham-Schroeder 146 118 2.37s 1.78 s
Needham-Schroeder-Lowe 83 90 190 s 142s

successful verification tools such as Tamarin. This support is how-
ever currently basic in MetaCP and we reserve its expansion and
improvement for future development.

4 EXPERIMENT RESULTS

The current development state of MetaCP supports a single plugin
specifically intended to replicate the semantics of Tamarin. Tamarin
uses multiset rewriting rules to specify the protocol and provides an
efficient semi-automatic verification engine. The plugin provides
a fully automated protocol-agnostic interpreter from PSV code
to Tamarin code. To demonstrate the efficacy of our plugin, we
designed three protocols: i) Diffie-Hellman key exchange (DHKE),
a popular protocol to the majority of security experts; ii) Needham-
Schroeder (NSP, asymmetric), a fundamental example of design
errors that can be easily patched to meet security, and finally iii)
the Needham-Schroeder-Lowe (NSLP), the fixed version of NSP. Our
intent was to compare the results from the automatically generated
models to the results of the models manually generated available
as official Tamaring examples. We would like to remark that our
plugin is merely a plugin for Tamarin; additional plugins targeting
the same language are allowed, and whilst that is out of the scope
of this current work it showcases the flexibility of this approach.
Using the interface and some manual intervention, we quickly and
automatically generated the three protocols, then we automatically
exported them to Tamarin. The exported models were well formed
and passed the correctness lemmas. In addition to the correctness,
we manually added other security goals to compare to the provided
files (a simple copy/paste was sufficient).

In the comparison between the automatically generated and the
sample Tamarin models, we could successfully show the exact same
attacks as well as the same proofs of security. Even without the
currently unimplemented security goals, our tool significantly re-
duces the required work as we integrated the security goals into the
generated output at a fraction of the time the full writing out would
require - not mentioning the knowledge and expertise needed to
manually write Tamarin code. In our experimentation, we found
that some protocols in Tamarin need extra help to reduce the state
space: the intuitive cryptographic decomposition as expressed in
PSV is not optimally interpreted and slows down the verification
significantly, whilst breaking down a message led to its quick accel-
eration. Finally, adding two lines as well as the lemmas, we were
able to exactly match the security results of the official Tamarin
examples written by experts, as illustrated in Table 1.

5 FUTURE WORK

We provide a high level design interface to design and specify secu-
rity protocols, embellished by an automated translation from design
to knowledge base to formal specification in Tamarin. Although
this work is still immature, its initial results are definitely very
promising: we were able to design and verify protocols much more
efficiently and less prone to errors and imprecision that may have
occurred had we done it manually. In particular, a simple sketch
of the DHKE protocol could be written in less than ten minutes,
including its correct formalisation and verification in Tamarin. Fu-
ture work would involve enriching the tools with novel plugins
developed by us targeting the most common protocol tools, includ-
ing diverse languages such as EasyCrypt. We also aim to make the
tool open source for anyone to use and extend to include their own
plugin and even different plugin options for the same backends.

As a farsighted final conclusion, it is a worthwhile exercise to
attempt to standardise the methodology in which future (and cur-
rent) protocols are designed. Formally verified models confer to
protocols the reliability required to focus on the problems that raise
at the implementation level. We see the data centric methodology
of MetaCP as a promising example towards this approach.

ACKNOWLEDGEMENT

This research is supported by The Alan Turing Institute and an
Innovate UK grant to Newcastle University through the e4future
project, as well as Arm Ltd. and EPSRC under grant EP/N509528/1.

REFERENCES

[1] Alessandro Armando, David Basin, et al. 2005. The AVISPA tool for the Auto-
mated Validation of Internet Security Protocols and Applications. In International
conference on Computer Aided Verification. Springer, 281-285.

Luca Arnaboldi and Hannes Tschofenig. 2019. A Formal Model for Delegated

Authorization of IoT Devices Using ACE-OAuth. In OAuth Security Workshop.

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.

2011. Computer-aided security proofs for the working cryptographer. In Annual

Cryptology Conference. Springer, 71-90.

[4] David Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A formal analysis of 5G authentication. In ACM SIGSAC
Conference on Computer and Communications Security. 1383-1396.

[5] Blanchet, Bruno and others. 2001. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. In CSFW, Vol. 1. 82-96.

[6] Carlos Caleiro, Luca Vigano, and David Basin. 2006. On the semantics of Al-
ice&Bob specifications of security protocols. TCS 367, 1-2 (2006), 88-122.

[7] Hao, Feng and Metere, Roberto and Shahandashti, Siamak F and Dong, Changyu.
2018. Analyzing and patching speke in iso/iec. IEEE Transactions on Information
Forensics and Security 13, 11 (2018), 2844-2855.

[8] Kobeissi, Nadim and Bhargavan, Karthikeyan and Blanchet, Bruno. 2017. Auto-
mated verification for secure messaging protocols and their implementations: A
symbolic and computational approach. In IEEE EuroS&P.

[9] Meier, Simon and Schmidt, Benedikt and Cremers, Cas and Basin, David. 2013. The

TAMARIN prover for the symbolic analysis of security protocols. In International

Conference on Computer Aided Verification. Springer, 696-701.

Metere, Roberto and Dong, Changyu. 2017. Automated Cryptographic Analysis of

the Pedeersen Commitment Scheme. In International Conference on Mathematical

Methods, Models, and Architectures for Computer Network Security. Springer, 275—

287.

[2

B3

[10

	Abstract
	1 Introduction
	2 Design of secure protocols
	3 From specification to Verification
	4 Experiment results
	5 Future Work
	References

